This is Part Four of the 4-part series, Immediate Adaptability (IA).
Part One: Immediate Adaptability
Part Two: Objections to Immediate Adaptability
Part Three: Functional Specifications of IA Clinical Information Systems
Part Four: A Generic Architecture for IA-CIS – Refactoring the EMR Model
The IA-CIS model is in some ways a mirror image of the CERP methodology. Over time the CERP methodology has diminished the role of requirements gathering and systems analysis to the point where its serves only to direct system configuration of fixed data structures and concomitant code bases. IA-CIS does the opposite: it treats requirements and design as the primary function of creating a system for the specific needs of the user community, and then generates an implementation from the choices defined in the design, creating dynamic storage structures served by an engineered library of adaptabilities.
The value of CERP engineered systems lies in their capacity to massage large volumes of data for repetitive, little changing processing. The disadvantage is their inability to satisfy the needs for fast-changing and diverse work that needs to adapt practices immediately for any number of social, legislative, or professional reasons. Using an IA-CIS for clinical care systems will reduce the maintenance load on the CERP so they don’t have to be continually adaptable and hence will lower the costs of managing them.
Hence the architecture advocated herein is to repurpose CERP systems for back office functions and take them out of the clinical coalface locations where IA-CIS technology can provide better support for work and better efficiency gains for the relative costs of installing them. Customisation of IA-CIS is the most likely pathway for reducing workarounds, but with the more important positive benefits of increasing data collection completeness, improving patient safety, enabling cultures of continuous patient improvement, and, of course, simplifying training.
An important extension to the IA-CIS is that as a method for creating a single application for one clinical department so that method can be repeated for many clinical departments in the one organisation. Although each department designs their own system as an autonomous community, they all use the same design tool and the same instantiation library, hence the technical implementation can house them all in the same software installation. This is equivalent to providing multiple customised best-of-breed systems in the one software installation. This architecture introduces a different type of interoperability, that is, system to system by means of within-system native interoperability. So while users are operating under the belief they are autonomous, they are actually all working on top of the one infrastructure with a single data management process that enables the direct sharing of data (given the appropriate permissions).
IA-CIS do not of themselves solve the problems of interoperability between different systems supplied by various vendors. Hence, it is unavoidable that a CERP system and an IA-CIS will have to use some external coding standard to share data between each other. Methods for solving this problem are well established by HL7 or direct procedure calls. But within the IA-CIS paradigm the problem is solved at a highly efficient level.
The IA-CIS also has another significant advantage in that it eliminates silos of data and maintenance and support for multiple systems.
In this architecture it is important not to take a stance that assumes all data needs to be available in the one place. Most data needs to usable by the people who collect it, and then appropriately selected pieces passed on to those who have secondary use purposes. Just as the results of every research experiment is not required by the back office so not every action taken by the clinical staff needs to be defined by the back office. Autonomy at the front office with a requirement to deliver the essentials to the back office enhances the efficiency of both communities.
There is an argument in some circles that there needs to be a single source of truth which can only be provided by a CERP. This is a specious need. The extensive dispersion of care into many disciplines with many different technologies has already lead to an irreversible distribution of data across multiple information systems, such as radiology, pathology and pharmacy. Advocates for this position, who already operate multiple systems successfully, use this as an argument to exclude evaluating the value of locally optimised systems. The solution proposed here is to ensure that local systems have appropriate interoperability.
Part One: Immediate Adaptability
Part Two: Objections to Immediate Adaptability
Part Three: Functional Specifications of IA Clinical Information Systems
Part Four: A Generic Architecture for IA-CIS – Refactoring the EMR Model